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ABSTRACT

The problem of the aerodynamic heating of a winged reentry vehicle is
discussed from two sides. The unsteady temperature distribution over a thin
wing is investigated in the first part of the paper and the optimum reentry
trajectory of a winged vehicle for minimizing the total aerodynamic heating
effect is studied in the second part.

PART I


INTRODUCTION

The fundamental system of equations for a laminar boundary layer of a
compressible fluid consists of the conservation equations for mass, mo-
mentum, and energy, the equation of state and the equations describing
the transport properties of air. The solution depends upon the boundary
conditions on the surface of a body. The velocity is taken to be zero on the
surface. For the temperature on the surface, on the other hand, either the
adiabatic-wall assumption or the equitemperature-wall condition has
usually been postulated simply for the convenience of analysis. No satis-
factory foundations for these assumptions seem to be established. Figures

b indicate 1 he velocity and temperature profiles in the boundary layer
of a flat plate at Mach 2 at several values of wall temperature. Since the
boundary-layer solutions depend on the wall condition, it is worthwhile to
determine t he pi.oper value of the wall temperature or the temperature
distribution on the solid wall.
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The wall temperature should be determined by solving the equation of
heat conduction in the body which is under the influence of aerodynamic
heating through the boundary layer. However, because the rate of aero-
dynamic heating depends on boundary-layer flow, the heating rate itself
turns out to be dependent on the wall temperature. This means that the
boundary layer around a body and the heat conduction in a body must be
solved simultaneously.
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Figure la. Velocity profile in the boundary layer over a flat plate
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at various temperatures.



UNSTEADY AERODYNAMIC HEATING 845

Although we are interested in the study of the unsteady temperature
distribution of a body, we shall restrict ourselves to the case of quasi-
steady heat transfer in the body and calculate the aerodynamic heating
rate by means of a steady-state boundary-layer solution, since the equi-
librium state in the velocity and temperature distribution is established
very rapidly [1].

The problem will be reduced to that of determining the surface tempera-
ture by introducing the heat-transfer rate through the boundary layer on a
wall with arbitrary temperature distribution in the equation of heat con-
duction. Emmons [2] solved the nonsteady aerodynamic heating of a plate
utilizing the heat-transfer rate obtained by Chapman and Rubesin [3].
The solution is restricted to the case in which the surface temperature of a
fiat plate is expressed in a power series of the length measured from the
leading edge of the plate. Neglecting the heat conduction along the plate,
Bryson and Edwards 141 obtained an exact solution for the problem. They
used the Lighthill's approximate solution [5] to estimate the aerodynamic
heating rate. The Lighthill solution does not involve any restriction on the
wall-temperature distribution. It is applicable even when there exists a
discontinuity in the temperature distribution. Since the temperature along
the plate is hardly regarded as uniform, the heat conduction effect may not
be neglected and it might be desirable to extend their solution to include
the heat conduction in the itlate. Kondo and Koyanagi 161 calculated the
temperature distribution of a wedge in a supersonic flow, applying the
Chapman and Rubesin solution.

The decrease of the strength of materials at higher temperatures is a
problem of importance for the design of supersonic airplanes. Therefore we
shall investigate the possibility of restriction of temperature rise by Inept is
of a jointed coating of materials with different melting point on the surface
of the wing or the body.

THE EQUATION OF HEAT TRANSFER IN A PLATE

A flat plate is placed parallel to a uniform flow, extending frontr ------ 0,
the leading edge, to  .r = L,  the trailing edge, in the direction of the .r-axis.

The equation describing the heal transfer in I he plate is

	

„. a'I
„,p„,h„,X„,h„,(:1(1, x)

	

al ax2 (I )

where we assume t hat t he plate is so thin that the temperature gradient

normal to the surface can be neglected. l'„„  p„„ h „„  and X„, are the heat

capacity, the density, the thickness, and the thermal conductivity of the
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plate, respectively. The left-hand side of this equat ion represents the time
rate of change in heat content and the first term on the right-hand side
means the heat conduction, while the last term is the heat transferred per
unit time from the boundary layer to a unit area of t he plate.

The heat-transfer rate  4(1,x),  at point  x  on the plat e at time  t  depends on

the boundary-layer flow, and since the latter is determined by the tem-
perature distribution on the plate  T.(1,x)  and the heat-transfer rate 4
depends not only on the temperature at that point but also on the tem-
perature distribution over the whole plate, this means that 4 may be
expressed as a functional of T.—that is, we can write

4(t, x) =  F[T(q)] (2)

For the steady-state laminar boundary layer of a flat plate, Chapman
and Rubesin [3] determined the heat-transfer rate as

u
F[T.(x)] =

1



v

where X., v and u. are heat-conduction coefficient, kinematic viscosity,
and the uniform velocity of the air respectively.

a„  and y,:(0) are certain constants and Eq. (3) is restricted to the case
where the surface temperature can be expressed in a power series of  x  as

T(x) — T. =  n(0) + E a„x"y„(0)  (4)
0

Lighthill [5] obtained an approximate expression

	

F[T.(x)] = 0.332Xo, \F-12-"pr"  1 — T,01/dE
v 0 (x31  E314)113 (5)

In this expression, Pr stands for Prandtl number and 7', for equilibrium
temperature which is determined as

1/2 u2
T, = T +  Pr 2C, (6)

where C, is the specific heat at constant pressure of air, To, is the tempera-




ture of the uniform flow. In the foregoing expressions, we notice that there

exists a singularity of the type »12 at the origin. This is caused by the fact

(3)
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that the boundary layer is extremely thin at the leading edge. It is interest-
ing to note that Eq. (3) depends 011 the temperature distribution on the
whole plate while Lighthill's expression depends solely on the temperature
between 0 and  x  on the plate. In other words, the heat-transfer rate at a
point depends, according to Lighthill, on the wall temperature in the
upstream of the point and not on the overall temperature distribution.
At any rate, Lighthill's expression can be applied to the case when dis-
cont Muffles of the temperature distribution exist , as stated before.

In the present paper we apply the Lighthill formula and obtain an integro-
differential equation for the wall temperature:

am
2 a2T„,

+  0.332
\ I 	 X.,Pru3  f

d [T, — 1%1 


(7)at — ax2 pcox C.p.h. Jo
)3/ 411/3

where a„, =  -‘,/À„,/C„,p„, is the thermal diffusibility.
Since Eq. (7) includes derivatives of  T „(1,x)  of the first order with

respect to  t,  and of the second order with respect to we have to impose
one initial condition and two boundary conditions to determine a par-
ticular solution of the equation. As the initial condition, we have

7(0 ,.r) = (8)

On the other hand, since the heat inflow rate at the leading edge is infinite,
we assume that the temperature there is always equal to the equilibrium
temperature L. In determining the solution for ordinary heat-transfer
problems, it is sufficient to assume, in addition, that the temperature
should be kept finite all through the conducting body. However, for the
present case, this weak condition is not enough to determine a solution.
Emmons assumed that.

at  x =  0 and x =  L

Since no heat source or sink exists at the trailing edge, let us put

07'
= 0 at x = L (9)

a.t.

as the other boundary condition. 01W can assume that the heat carried

away it) the wake is negligible. The assumption of Eq. (9) is confirmed by

an experiment. We measured the temperature distribution over a steel
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plate, placed parallel in a supersonic wind tunnel at Mach 2.4, finding that
the temperature distribution is almost flat in the rear part of the plate
(Fig. A).

Now since the equation is linear in T„„we would like to find the indicial
admittance of the system—that is, the transient temperature variation of
the plate when it is suddenly placed into a uniform flow. In other words,
we shall solve the equation by taking

=  ItE(t)

whereE(t) is the Heaviside unit function.
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Figure A. Temperature distribution (steel plate, L 330 mm, h = 10 mm, M = 2.2).
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Introducing nondimensional length and time as

2
X77 = r = j

•

t

Eq. (7) is rewritten as

d[T — T.] 


(-9772+ B 1 f
[ — y

where

B =  0.332 (X')
r

/3 lumL L
Xmi 	 h0

and the initial and the boundary conditions are

T„,(0, n) = T.

T (r ,0) = LE(t)

and

(aT 
 — o
VII Ii

SOME REMARKS ON NUMERICAL ANALYSIS

It is still hard to find the solution in a closed form, and therefore we
resort to the numerical analysis, where steps in T and n are taken as k and
h, respectively; as

Ar =  k and An =  h  (12)

For a parabolic type equation, we should take

_ k 1
r = <

Therefore, if we increase the number of points on the plate, we must take
AT = k small and a long consecutive computation must be carried out
before the equilibrium state is obtained. Numerical examples are worked
out by taking h =  0.2 or 0.1.

aT.

a, (10)

(13)
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In a finite-difference form, Eq. (7) becomes

T„(jh, T k) rT„,( j 1 h, T) + — 207 ',2(jh,

d-rT(j — 1 h, 7-) Bk E F (j, i)[T o(ih, 7-) — T o(i — 1 kr)]

( = 1, 2, . . . , n) (14)

where we have

F =
1  1 fE4]-1 3

dE
h (i—nh L\ jh

(15)

which is computed by Simpson's integral formula.
To carry out numerical example, the following values are assumed:

Mach number of the uniform flow M  = 2
temperature of the uniform flow T,, = 0
thermal conductivity X„ = 0.240 kcal/mh deg
Prandtl number Pr = 0.71
kinematic viscosity Pc° =  0.154 cm2/sec

for air and
length L = 1,000 mm
thickness h „, = 1 mm

for the dimensions of the plate

TABLE 1. NUMERICAL VALUES OF PARAMETERS

Metal )1/4„, 4 a!,/X.
Equivalent


time

Steel 62 0.073 69.40.00118 10-31/40 0.822
Duralumin1410.240 32.50.0017— 5 X 10-21/20 0.500
Copper 3320.40412.90.00121 2 X 10-21/8 0.742

RESULTS AND DISCUSSIONS

The results of the numerical computations are shown in Figs. 2-8.

NONSTEA DY TENIPER AT UR E DIST R I BUTIONS

Figures 2 -5 indicate the temperature distribut ion on steel, duralumin
and copper plates.
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ACCURACY OF THE NUMERICAL ANALYSIS

In Fig. 2, the effect of the magnitude of steps in n is indicated. The thick

lines show the temperature distribution at various times when we take


= 0.1 or 10 points. The difference is large when t is small in the neigh-




bourhood of 20 percent chord while it is negligible after 10 minutes or in

the rear part of the plate. We can infer that the exact solution may show a

little lower temperature near the leading edge at earlier times. However,
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Figure 2. Temperature distribution (steel plate, L = 1,000 mm,  h 1  mm),  M„, =  2,
T =  20°C.
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since the temperature inclination is very steep, it recovers quite rapidly,
while in the rear part of the plate the approximate solutions include
smaller errors. We can also conclude that after about 10 minutes, the
difference between the approximate and exact solut ions are not perceptible.

EFFECT OF HEAT CONDUCTION

In Fig. 4 the dotted lines indicate the solutions with the heat conduction
in the plate neglected, which correspond to the Bryson-Edwards analysis.
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Figure 3. Temperature distribution (Duralumin plate, L = 1,000 mm,  h = 1  mm),

2110, = 2,  T =  20°C.
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The temperature distributions are compared for the plate, for which the
effect of heat conduction may be most evident.

If the heat conduction is neglected, the temperature near the stagnation
point is shown to be much lower than the actual case in the earlier stage.
On the other hand, the temperature close to the leading edge is reduced by
conduction after some time, so that the solution with heat conduction
neglected, indicates higher temperature at 7 minutes.
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7),

Figure 4. Temperature distribution (copper plate, L =  1,000 mm,  h = 1  mm),

M., = 2,  T =  20°C.
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TEMPERATURE EQUILIBRIUM

The temperature rise by heat conduction is proportional to the second
derivative of the temperature with respect to x, which approaches zero as
the time elapses. The temperature of the plate is elevated mainly by the
aerodynamic heating which is later represented in the last term of Eq. (7).
BecauseB is proportional to c4,IX„,  =  1/C„,pm,Fig. 5 shows that the time
required for the equilibrium state to be reached is in the order of magni-
tude of B for various materials.

TEMPERATURE DISTRIBUTION ON A JOINTED PLATE

A 500-mm long and 1-mm thick steel plate is jointed with a Duralumin
plate of equal dimensions. The temperature distribution over this jointed
plate in a uniform flow at Mach 2 is indicated in Fig. 6. The temperature
rise in the part of Duralumin is rapid in the earlier stage. This high tem-
perature is conducted on both sides and the curve becomes flat after
several minutes.

The numerical solutions are carried out for this case in a similar way as
stated above. The conditions at the jointed point are taken as

= T0.5,7-)

_xi (aTi) _ _x2(aT2)

\9j /0.5

whereT1,  T2; Xi and X2 are the temperature and heat conductivity of each
material.
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Figure 6. Temperature distribution (steel-Duralumin plate, L = 1,000  mm,  h = 1 mm) ,
=  2,  T =  20°C.
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SIMILARITY PARAMETERS

The recovery factor is defined as

— T.r =
— T.

for the surface temperature T ,o;see Eq. (10). Therefore the value of B is
the sole parameter to determine the recovery factor. That is

r (a„,2)
r(T) =  f(B),

(L2)t
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Figure 7. Temperature distribution of uniformly accelerated plate.
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The effect of dimensions is represented by L312/h° for recovery factor and
1/L2 for time.

THICK PLATE

The temperature distributions on a steel plate of 10-mm thickness are
worked out for the same condition. Figure 7 shows that the effect of the
aerodynamic heating is much smaller than in the thin-plate case. Due to
the larger heat capacity, the temperature rise is more gradual than in the
case for a thin plate.

ACCELERATED FLIGHT

Since the equation is linear and an initial temperature has been obtained,
we can calculate the temperature variation for an arbitrary flight condition
by simple superposition of the solutions. As an example, a case of uni-
formly accelerated motion is carried out.

a = 1.14 m/sec2

The results are indicated in Fig. 8.
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HYPERSONIC SPEED

The surface temperature variations of a thin steel plate of the same
dimensions as treated before, at Mach 7 are shown in Fig. 9.

In this case, instead of Eq. (5), we used an expression like Eq. (3),

taking into account the shock-boundary-layer interaction. The rear part
of the plate will reach the equilibrium temperature in a shorter time, due
to the large aerodynamic heating. However, the present writer hesitates to
apply the result to practical situations since the equilibrium temperature
is far beyond the melting point of steel.
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PART II


INTRODUCTION

It is one of the most serious problems to find some means of reducing
the tremendous amount of heat inflow to a space vehicle in the reentry
stage. Water-film cooling, gas injection cooling and ablation seem to be
most prospective countermeasures.

However, if there is a possibility of decreasing the amount of aero-
dynamic heating by changing the reentry path, it would be worthwhile to
investigate the trajectory of that kind. When the vehicle has lifting
surfaces, one can change the flight path by pilot control without any
additional device.

The trajectory may be so determined as to restrict either the maximum
heating rate at the stagnation point of the vehicle or the maximum accelera-
tion during the reentry flight in the earth's atmosphere.

Here we shall define the optimum trajectory as the flight path among all
admissible reentry paths along which the total amount of aerodynamics
heat transfer will become minimum. The total heat transfer will be pro-
portional to the amount of cooling materials consumed.

The heat-transfer rate q to some area of a vehicle depends on the velocity
v, the density p and the temperature  T  of the atmosphere. The variation
of  T  between 100km and 0 km altitudes is in a ratio of

10-' to 1

whereas the corresponding variation of p is

10-8 to 1

Therefore the effects on the heat transfer of the atmospheric-temperature
variation can be neglected for the engineering practice.

We shall assume that

4 = KlyrvY (16)

where  K  is a characteristic constant for the vehicle, and  x  and y are dimen-
sionless positive exponents. The appropriate values of the exponents are

x = 1, y = 3

for the whole wetted surface,

= 4, y = 3
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when the boundary layer is laminar, and

x  = y = 3 +

when turbulent, for an area near the stagnation point of a blunt body [1].
The total heat inflow during the reentry flight is

Q = f Kpxe dt (17)

whereT is the total flight time from the initial altitude Z =  0 to the earth
surfaceZ = H. Since we have

dZ
d—t= V sin 4, (18)

v.
110km

100km

A

50km

V, Okm

Figure 10. Various kinds of reentry paths.
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where is the flight-path angle measured with respect to the horizontal
line, Eq.  (17)  is rewritten as

" K 	
dZQ = f sin

(19)

We can imagine several trajectories as drawn in Fig. 10. Along the path
A the vehicle comes down with a decreasing speed and then passes straight
downwards through the dense atmosphere. Then the vehicle will ex-
perience a high rate of aerodynamic heating, but the period of aero-
dynamic heating will be short. Along the path  B  the vehicle enters vertically
into the rare atmosphere, reducing the heating time and then pulls up
reducing the velocity in the dense air. The curves C and D are the modifi-
cations of A and B. Along the path C the vehicle will encounter a lower
aerodynamic heating rate in a longer time compared to the path D. Thus
it is hard to determine the optimum trajectory by a simple insight.

If the total loss of mechanical energy is to turn into the aerodynamic
heat transfer from the boundary layer of the vehicle, then the optimum
path would be the one which terminates at the maximum speed on the
earth's surface.

Miele [2] studied the drag modulation program for minimizing the total
heat input for a nonlifting reentry body.

GENERAL CASE (LIFTING CASE)

Now we shall turn to the general case when the drag is related to the lift,
so that

(20)CD  = f (C1.)

The equations of motion of the vehicle are

dv 1 2
= 'W3 sin 9 PV SCD

cos 4p—  91 pi ,2SC L

where  r  is the radius of curvature of the flight path. Since

dcp_ =
dt

and

g r
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the equations reduce to

dv g 1 Sg  p \
dZ v  2 w sin (,9  LI

and

	

chi) g 1 Sg p 


dZv2= cot -
2 w sin

CL

respectively, where  CL  must satisfy the following inequality:

CL„,, < C L C Lmax

The optimization problem is formulated as follows: in the class of
functions:  CL(z), v(z),  and p(z) which satisfy Eqs. (21), (22), and (23)
with the prescribed initial values  CL(0), v(0), and ‘,0(0), find a particular
combination of functions which extrernizes the integral

Q = f K p'v'l /sin yo dZ

The augmented function for this conditional variation principle is

F = Kp'vY-1/sin

g

	

+ x1 	 - +1 A 

dZ  v 2 sin ço (77)}

+ X2
{  dZ(hp  - g

cot
v,

+A .
p  n }

v2  2 sin  (p







where

and n =  CL

The Euler-Lagrange equations are

K(y -  1) p'vY-2/sin Xi{g  +1 A 	 P

	

v22 sin f (77)}

, 2g , dX1
+ A2 (-1- cot cp) - —

dZ

[Kp'v" + Xi {1 A prf(n)} + X2 (- 1- A pp)]ms2 2 sin' (p

g 1 01X2 

X2 • + — 0 (27)

v2 sni2  ço dZ
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and

1rf ' ( ) + X2 = (28)

where

f (77) =
f

The system of Eqs. (21), (22), (26), (27), and (28) and the inequality
(23) furnish us with the fundamental equations to determine 77, v,
XI, and X2.

A SIMPLE CASE (NONLIFT:NG CASE)

Suppose a space vehicle has a configuration as illustrated in Fig. 11.
Since it has a blunt nose, the change of the flow pattern around the body
due to the variation of flow direction will be small. The lateral force to the

() 0

Figure 11. A Winged reentry vehicle.
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body being negligible, the total life is produced by the lifting surfaces or
by some lifting facilities.

We shall take the drag coefficient as constant :

An) =  C (29)

Since

f'(7?) = 0

we have

X2 =

by Eq. (28), and Eq. (27) yields

COS
(K 139)11—' + XiIACpv) .  —  0

sill2

Consequently, either

Kp'vY-1 + Xi ACpv =  0 (30)

or

COS  go 0

sin2

must hold. However, the transversality condition for the variation is

[XIbi) X2Syd = 0

Consequently,

[X1 = 0

must hold.
However, in general,

1(1)1,1,

does not vanish at  Z = H,  and hence Eq. (30) will not hold.
Accordingly, we have




from Eq. (31). This means that the vertical path is the optimum trajectory.
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In this case, we have

C L = 0 (33)

by Eq. (22).
This case is not very interesting.
If we use the wing as a spoiler, we can modulate the drag by changing

the angle. Then we have

	

C Dmia C D C Dmax (34)

We shall introduce a reduced vertical distance:

	

h = f p'dZ
(35)

Then the total heat transfer is expressed as

	

Q = f Ke dh (36)

where  I  is the total reduced distance, that is

I = f dZ (37)

Obviously, since a smaller velocity corresponds to a smaller transfer,

	

CD = CDmax (38)

will give the minimum heat transfer.
If we impose a restriction on the total reentry time or on the terminal

velocity of the vehicle, the optimum modulation programming for the
minimum heat transfer will result in a more interesting case. Miele investi-
gated such cases.

THE NONEXISTENCE OF THE SOLUTION = ir/2

In order to see that the general case includes a more interesting tra-
jectory, we shall prove the nonexistence of the solution ço = 7r/2. If we
suppose ç = 7r/2, then we have  n = 0 or C L = 0 from Eq. (18), and

An) = c , .1"(n) =  E
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The fundamental system becomes

	

dv g 1 A
d
—Z = -v - -2nupv

K yp'vY-' + x + I AC P
) -

dX1

	

v2 2 dZ =

	

g dX2

— X2 —

V2
+

dZ
and

X1Ev + X2 =

From Eqs. (39), (41), and (42), we have

dX1
= X1ACp

dZ 2

Therefore, Eq. (40) yields

Kyp'vY-' Xi-g-- = 0
2

or

KW/Pi'  + X1g = 0 (44)

Hence Al must be negative.
On the other hand, we have

= exp {
1
-2AC f dZ} (45)

from Eq. (43). Equation (45) implies that X, is positive. Therefore, the
solution for the general case does not include the vertical path ço = 7r/2.

NUMERICAL EXAMPLES AND DISCUSSIONS

The variational problem with additional conditions can be solved
numerically. Numerical examples have been carried out for the following
sets of parameters:

K = 1, 11 = 12 X 104, g = 9.8, .1 = 9.8 X 10-3


v(0) = 10 X 103, ,p(0) = 9°, 18°, 27°, . . . , 90°;


CVO) = 1.0, 3.0

(43)
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CONST

initial

values

v (0), 9)(0, CL(0)

z= 0

A1(0)


zip

4A1


CL(z)

Z=-z+zlz

+ no

ço=ço(z)-1-ziço


v=v(z)+ zlv


AC= A1(z)+JA1

yes

zH END

writing

Figure 12. The flow chart for the computation.
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The standard atmosphere table is used for p(Z), the flow chart for the
computation on an electronic computer is indicated in Fig. 12, where

= 1 X 103.

The optimum flight paths are shown in Figs. 13 and 14 in a vertical
plane, where the shape of An) is assumed as indicated in Fig. 13. In
the upper atmosphere where the density of air is extremely low, the
flight-path angle remains almost constant, while in the denser at-
mosphere the vehicle pulls up several times to reduce the velocity.
The variations of velocity as well as the heat-transfer rate per 1-km
vertical descent are indicated in Fig. 15. Although the velocities in
the upper atmosphere are the same for the two cases, because of the
longer flight time along the inclined path, the heat-transfer rate per
unit distance of vertical descent becomes larger for the path. How-
ever, since the scale for the heat-transfer rate is logarithmic, the
actual difference is not so large as would appear from the figure. We
also notice that the curves coincide in the lower region. The optimum
trajectory changes a great deal, depending on the initial incident
angle, while the velocity variation and the heat-transfer rate are not
very much influenced by the incident angle.
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Figure 13. Optimum paths for various reentry angles (Laminar).



UNSTEADY AERODYNAMIC HEATING 869

40

30

« 20
00=90'

90=45'

10

0
0 5 10 15 20 25

DIstance (lan)

Figure 14. Optimum paths; details from Fig. 13 in the low-altitude region.
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3. In Fig. 16 are shown some interesting trajectories obtained for the
cases of greater initial reentry angles. In this case the lift-drag rela-
tion is linear, as

f (n) = 1.00 + n

which might be the case for a diamond wing or a double wedge wing.

The vehicle ascends for a while making use of the gravity com-

12

Optimum Reentry Paths

	

Zkm

CL

0
1

1<5

45'
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20
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Figure 16. Optimum reentry paths for linear lift-drag relation.
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Figure 17. Variations of velocity and heat-transfer rate corresponding to Fig. 16.
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ponent to reduce the velocity. The velocity and the heat-transfer
rate are shown in Fig. 17.

4. In the present study we are interested in the laminar heat t ransfer at
the stagnation point. However, the optimum problems for the
turbulent heat transfer as well as the heat transfer on the whole
wetted surface can be treated in a similar way. In Figs. 18 and 19
are shown corresponding results for a vehicle with f (t) in Fig. 13.
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Figure 18. Optimum reentry paths (turbulent).
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Figure 19. Variations of velocity and heat-transfer rate corresponding to Fig. 18.
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COMMENTARY

K. L. C. LEGG (Loughborough College of Technology, Loughborough, Leicester,

England):  I should like to ask the author if he could provide some details of the
wind-tunnel tests effected on the thin metal plates to corroborate the unsteady
temperature distribution calculations. Such experimental work is extremely valu-
able as we tend to make many theoretical predictions on heat-transfer problems
which can often be suspect due to dubious physical assumptions that have to be
made and there is a great need to develop good experimental techniques to assist
theoretical advance.
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REPLY

The experiments were carried out in a supersonic wind tunnel at the National
Aero/Space Laboratory in Tokyo. Besides it took some time to establish a steady
flow in the tunnel; the stagnation temperature changed gradually as shown in
Fig. A, and we could not compare the data with the theory. We only verified the
appropriateness of the assumption  aT/ ax = 0 at the trailing edge.

COMMENTARY

DR. A. VAN DER NEUT (Technical University, Delft, Netherlands): The assump-
tion was made that the boundary condition at the trailing edge is aT/az =  O. It
is true for the blunt trailing edge where the heat transfer through the blunt edge
will be negligibly small. However, with sharp trailing edges  aT/ax  will not vanish.
My question is: What was the shape of the trailing edge of the plates, which showed
when tested that  aT/ ax  could be assumed to be zero?

REPLY

The trailing edge of the plate was actually blunt as shown in Fig. A. However,
the limiting case when the thickness of the plate can be neglected is being considered,
and therefore the assumption of the shape of the trailing edge will have little
influence on the results.

COMMENTARY

JOHN JELLINEK (Johns Hopkins University, A pplied Physics Laboratory,

Silver Spring, Maryland): Have you considerednonequilibrium dissociated air
effects in your reentry studies? These may considerably affect the heat input to
leading edges of a vehicle on a sharp reentry trajectory.

REPLY

No. However, the effects of nonequilibrium dissociated air, when properly de-
scribed mathematically, can be introduced into the equation presented in the
paper, and then solutions for optimum reentry maneuver, corresponding to mini-
mum total heat input, can be obtained.




